

Dedic Mathematics

Bharti Uttar Kshetra

Narayan Bhavan, Lajpat Rai Marg, Kurukshetra Phone: 01744-259941

प्रकाशक एवं वितरक

Vidya Bharti Uttar Kshetra

Narayan Bhavan, Lajpat Rai Marg, Kurukshetra Phone: 01744-259941 E-mail: vbukkkr@yahoo.co.in

वितरण-केन्द्र

भारतीय शिक्षा समिति, जम्मू कश्मीर प्रदेश

भारतीय विद्या मंदिर परिसर, अम्बफला, वेद मंदिर, जम्मू-180 005

दूरभाष : 0191-2547953

E-mail: bssjmu2006@yahoo.com bssjk08gmail.com

सर्वहितकारी शिक्षा समिति, पंजाब

सर्विहितकारी केशव विद्या निकेतन, पठानकोट बाईपास, गुरु गोबिन्द सिंह एवेन्य, नजदीक टेलीफोन एक्सचेंज, जालन्धर-144 009

दुरभाष: 0181-2421199, 2420876

E-mail: ses_jld@yahoo.co.in, ses.jld@gmail.com

हिमाचल शिक्षा समिति

हिम रश्मि परिसर, विकास नगर, शिमला-171 009 (हि.प्र.)

दूरभाष: 0177-2624624, 2620814 E-mail: shikshasamiti@sancharnet.in

himachalshikshasamitishimla@gmail.com

हिन्दू शिक्षा समिति, हरियाणा

संस्कृति भवन, गीता निकेतन आवासीय विद्यालय परिसर, लाजपत राय मार्ग, कुरुक्षेत्र-136 118 (हरियाणा)

दूरभाष: 01744-290241, 291156 E-mail: hsskkr@yahoo.co.in

ग्रामीण शिक्षा विकास समिति, हरियाणा

संस्कृति भवन, गीता निकेतन आवासीय विद्यालय परिसर, लाजपत राय मार्ग, कुरुक्षेत्र-136 118 (हरियाणा)

दूरभाष : 01744-290241, 291156 E-mail: gsvskkr@yahoo.co.in

हिन्दू शिक्षा समिति-दिल्ली

डी.ए.वी.व.मा. विद्यालय क्र. 2, शंकर नगर, दिल्ली-110 051

दूरभाष: 011-22008542

E-mail: hindushikshasamiti@gmail.com

हिन्दू शिक्षा समिति न्यास

गीता बाल भारती परिसर, राजगढ़ कॉलोनी,

दिल्ली-110 031

दूरभाष : 011-22002957

E-mail: mahamantri nyas@yahoo.co.in

समर्थ शिक्षा समिति-दिल्ली

माता मन्दिर गली, झण्डेवालान, नई दिल्ली-110 055 दूरभाष : 011-23628146, फैक्स : 23628146

E-mail: samiti59@live.com

प्रथम संस्करण : 2017, संशोधित संस्करण : 2019

वैधानिक चेतावनी

यह पुस्तक विद्या भारती उत्तर क्षेत्र द्वारा प्रकाशित है। इस पुस्तक का प्रत्येक भाग सर्वाधिकार सुरक्षित है।

Author: Gopal Dass Sharma M.Sc, B.Ed.

Parmukh Vedic Ganit, Utter kshetra

Rakesh Bhatia M.A., B.Ed. Prantiya Parmukh Vedic Ganit, Haryana

Rakesh Malik M.Sc., B.Ed. Prantiya Sah-Parmukh Vedic Ganit, Delhi

मुद्रक:

बुलबुल प्रिंटिंग प्रैस

136/140/55 औद्योगिक क्षेत्र, चण्डीगढ़

दूरभाषः 09988338711 ई-मेलः bulbulpress@gmail.com

Preface

Vedic mathematics is an ancient wisdom of fast calculation. It is based on simple rule and principles which enable mathematical problem of all kinds to be solved easily and efficiently. It removes the fear of mathematics and make it enjoyable subject. The Study of Vedic mathematics removes the mathematics phobia and nervousness. It increases self-confidence of learners and no calculator dependency enhances the academic performance. The Vedic method is a boon for all competitive examinations. As a result, the success rate in the examinations becomes higher

Vedic mathematics is based on 16 sutras &13 sub sutras. It deals with numbers and also with advanced theories such as calculus, simultaneous equations, solving differentiation and integration problems.

The demand of book of 9th standard students since last decades inspires us a lot for writing books on Vedic Mathematics. In this regard the encouragement from Sh. Surender Attri ji. Mantri Vidya Bharti Uttar Kshetra is incomparable. So a meeting was organized at Sanskriti Bhavan Kurukshetra on 4 Nov 2016 and a detail road map has been framed. I sincerely thankful to Sh. Rakesh Bhatia ji, Prant Pramukh Haryana, Sh. Gulshan ji, Sah Prant Pramukh Haryana, Sh. Rakesh Malik ji, Sah Prant Pramukh Delhi, Sh. Devender Singh Yadav ji, Sah Prant Pramukh Delhi, Sh. Mahesh Chand Sharma ji, Prant Pramukh Punjab for their valuable contribution.

As there is always a scope for Improvement, any suggestion from teachers, students and other readers will encourage us to serve the mathematics students.

Gopal Dass Sharma Head of the Department of Vedic Mathematics Vidya Bharti,Uttar Kshetra

Present Scenario of Vedic Mathematics

Vedic Mathematics is being studied in all over the world. Many renowned personalities have been working in the field of Vedic Mathematics. In the chain of scholars and the lovers of mathematics enquired from Jagatguru Swami Bharti Krishan Tirth ji whether Ganit Sutras are mentioned in Vedas? They also asked Swami ji whether there is mathematics in these sutras. Then Swami ji concentrated on these Ganit Sutras from 1911 to 1918 and answered in positive.

Many institutions have been working in the field of Vedic Mathematics. The journey of Vedic Mathematics in Vidya Bharti started from 1995. In this regard, Vidya Bharti has been training their teachers and students every year to implement Vedic Mathematics in their mathematics syllabus. Besides questioning in exams, many activities like quiz, paper reading, models, practical and Ganit Fares (Melas) are being organized by Vidya Bharti Akhil Bharti Shiksha Sansthan. These activities are being organized at five levels i.e. school level, Sankul level, State level Kshetriyalevel and National Level.

It is matter of pleasure to know that so many state governments like Madhya Pradesh, Chhattisgarh, Jharkhand and Haryana has initiated to implement Vedic Mathematics in school syllabus. Many universities like kalidas Sanskrit University, Nagpur, Maharaja Agrasen University Baddi (Himachal) and Dr. Hari Singh Gaur Central University Sagar (Madhya Pradesh) have started certificate course and Diploma course in Vedic Mathematics. International Vedic Mathematics Conference has been organized in Kolkata in December, 2016. Many scholars in Mathematics Department have been entitled for the research in the field of Vedic Mathematics by many universities. There is bright future in the field of Vedic Mathematics.

Rakesh Bhatia M.A., B.Ed. Prantiya Vedic Ganit Pramukh, Haryana

CONTENT

Chapter	Page No.
Mixed Calculation Of Square	1
Sum of Product of Three Linear Algebraic	3
Expressions	
Square & Square root of Algebraic Expression	5
Decimal and Fractions	8
Triplets	13
Algebraic Division	16
Mixed Calculation of Multiplication & Division	18
Sum of Product of Two Digits Numbers	20
Simple Equation	22
Question for Competitive Examination	26
Shakuntla Devi	27
Answer Key	29
	Mixed Calculation Of Square Sum of Product of Three Linear Algebraic Expressions Square & Square root of Algebraic Expression Decimal and Fractions Triplets Algebraic Division Mixed Calculation of Multiplication & Division Sum of Product of Two Digits Numbers Simple Equation Question for Competitive Examination Shakuntla Devi

Meaning of 16 Sutras of Vedic Mathematics

1. एकाधिकेन पूर्वेण पहले से एक अधिक के द्वारा। By one more than the previous one. निखलं नवतश्चरतमं दशत: -सभी नौ में से परन्तु अन्तिम दस में से। All from nine and last from ten. 3. ऊर्ध्वतिर्यग्भ्याम सीधे (खडे) और तिरछे दोनों प्रकार से। Vertically and Crosswise. 4. परावर्त्य योजयेत पक्षान्तरण कर उपयोग करें। Transpose and apply. समुच्चय समान होने पर शुन्य होता है। 5. शुन्यं साम्यसम्च्वये When the 'Samuchaya's are the same, that 'Samuchava' is zero. 6. आनुरूप्ये शुन्यमन्यत् अनुरूपता होने पर दुसरा शुन्य होता है। If one is in ratio, the other one is zero. जोडकर और घटाकर। 7. संकलनव्यवकलनाभ्याम् By addition and subtraction. अपूर्ण को पूर्ण करके। 8. पूरणापूरणाभ्याम् By completing. चलन-कलन के द्वारा 9. चलनकलानाभ्याम् By Calculus जितना कम है अर्थात् विचलन। 10. यावदुनम् The Deficiency 11. व्यष्टिसमष्टिः एक को पूर्ण और पूर्ण को एक मानते हुए। Whole as one and one as whole. 12. शेषाण्यङ्केन चरमेण अंतिम अंक से अवशेष को। Remainder by the last digit. 13. सोपान्त्यद्वयमन्त्यम् अन्तिम और उपान्तिम का दुगुना। Ultimate and twice the penultimate. 14. एकन्युनेन पूर्वेण पहले से एक कम के द्वारा By one less than the Previous one. 15. गुणितमुच्चय: गुणितों का समुच्चय। The whole Product. गुणकों का समुच्चय। 16. गुणकसमुच्चय: Set of Multipliers.

Meaning of 13 Up-Sutras of Vedic Mathematics

1. आनुरूप्येण नुरुपता के द्वारा। Proportionately. 2. शिष्यते शेषसंज्ञः बचे हुए को शेष कहते है। The remainder is the constant 3. आद्यमाद्येनान्त्यमन्त्येन पहले को पहले से. अंतिम को अंतिम से। First by the first and last by the last. 4. केवलै: सप्तकं गुण्यात् क, व, ल से ७ का गुणा करें। Multiply 'ka' (1), 'va' (4), 'la' (3) by 7 (Formula for विभाजनीयता परीक्षण की एक विशिष्ट क्रिया 5. वेष्टनम् का नाम The osculation. (A method for divisibility test.) जितना कम उतना और कम। 6. यावदूनं तावदूनम् What ever deficiency further lessen that much. 7. यावदुनं तावदुनीकृत्य वर्गं जितना कम उतना और कम करके वर्ग की योजना च योजयेत भी करें। Lesser by the deficiency and add its square. 8. अन्त्ययोर्दशकेऽपि अंतिम अंको का योग दस। Sum of last digits is ten. 9. अन्त्ययोरेव केवल अंतिम द्वारा। Only by the last. 10. समुच्चयगुणितः सर्व गुणन। Product of whole. 11. लोपनास्थापनाभ्याम् विलोपन एवं स्थापना द्वारा। By Elimination and retention. 12. विलोकनम अवलोकन द्वारा। By observing. 13. गुणितसमुच्चयः समुच्चयगुणित-गुणांक के समूहों का गुणनफल और गुणनफल के गुणांको को योग समान होगा। Product of the whole is equal to whole of the product. अन्य विशिष्ट संकल्पनाएँ -1. द्वन्द्वयोग द्वयात्मक। (Duplex) शोधित राशि। (Purity) 2. शद्ध घात के स्थान का अंक। (Flag digit) 3. ध्वजांक

Other Important Formulae of Mathematics

Name	Figure	Lateral or Curved Surface Area (sq.units)	Total Surface Area (sq.units)	Volume (cu.units)	
Right circular cylinder		2πrh	$2\pi r(h+r)$	πr³h	
Right circular hollow cylinder		$2\pi h(R+r)$	$2\pi(R+r)(R-r+h)$	$\pi R^2 h - \pi r^2 h$ $\pi h (R^2 - r^2)$ $\pi h (R + r)(R - r)$	
Right circular cone		πrl	$\pi r(l+r)$	$\frac{1}{3}\pi r^2 h$	
Frustum		π(R+r) <i>[</i>	$\pi(R+r)\ell+\pi R^2+\pi r^2$	$\frac{1}{3}\pi h(R^2 + r^2 + Rr)$	
Sphere		$4\pi r^2$		$\frac{4}{3}\pi r^3$	
Hollow sphere	*		(Mart	$\frac{4}{3}\pi(R^3-r^3)$	
Hemisphere		$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$	
Hollow Hemisphere		$2\pi(R^2+r^2)$	$2\pi(R^2 + r^2) + \pi(R^2 - r^2)$	$\frac{2}{3}\pi(R^3-r^3)$	
Cone $l = \sqrt{h^2 + r^2}$ $h = \sqrt{l^2 - r^2}$ $r = \sqrt{l^2 - h^2}$ CSA of a cone = Area of the sector $\pi rl = \frac{\theta}{360} \times \pi r^2$ Length of the = Base circumference sector of the cone			10. Volume of water flows out through a pipe = {Cross section area × Speed × Time } 11. No. of new solids obtained by recasting = Volume of the solid which is melted volume of one solid which is made		
Cone CSA of a co	one	one = Area of the sector $= \frac{\theta}{360} \times \pi r^{2}$ the = Base circumference of the cone	the energy of the cone $l = \sqrt{h^2 + r^2}$ $h = \sqrt{l^2 - r^2}$ $r = \sqrt{l^2 - h^2}$ $r = \sqrt{l^2 - h^2}$ $h = \frac{\theta}{360} \times \pi r^2$	$l = \sqrt{h^2 + r^2}$ $h = \sqrt{l^2 - r^2}$ $r = \sqrt{l^2 - h^2}$ $he = \text{Base circumference}$ $0 \text{ The end of the sector}$ $= \frac{\theta}{360} \times \pi r^2$ $= \text{Base circumference}$ $The end of the solid with the end of the solid of the solid with the end of the end of the solid with the end of the en$	

Other Important Formulae of Mathematics

Rules of Zero:

$$a^{1} = a$$

 $a^{0} = 1$

Liner Equation:

Linear equation in one variable ax+b=0, x= -b/a Quadratic Equation: $ax^2+bx+c=0$ $x = -b \pm \sqrt{b^2-4ac}$ 2a

Discriminant $D = b^2 - 4ac$

Other Important Formulae of Mathematics

Sin C =
$$\frac{\text{side opposite to angle C}}{\text{hypotenuse}} = \frac{p}{h}$$

$$\cos C = \frac{\text{side adjacent to angle C}}{\text{hypotenuse}} = \frac{b}{h}$$

$$\tan C = \frac{\text{side opposite to angle C}}{\text{side adjacent to angle C}} = \frac{p}{b}$$

$$\operatorname{Cosec}\theta = \frac{1}{\sin\theta}$$
 $\operatorname{Sec}\theta = \frac{1}{\cos\theta}$ $\cot\theta = \frac{1}{\tan\theta}$ $\tan\theta = \frac{\sin\theta}{\cos\theta}$

∠A	0°	30°	45°	60°	90°
Sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
Cosec A	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
Sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
Cot A	Not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

The value of sin or cos never exceeds 1, but the value of sec and cosec is always greater than or equal to 1 $\,$

$$\sin(90^{\circ} - \theta) = \cos \theta$$
$$\cos(90^{\circ} - \theta) = \sin \theta$$

$$\tan(90^{\circ} - \theta) = \cot \theta$$

$$\cot(90^{\circ} - \theta) = \tan \theta$$

$$sec(90^{\circ} - \theta) = cosec \theta$$

$$cosec(90^{\circ} - \theta) = sec \theta$$

$$\sin^2\theta - \cos^2\theta = 1$$

$$\sec^2\theta - \tan^2\theta = 1$$
 for $0^\circ \le \theta < 90^\circ$

$$cosec^2\theta = 1 + cot^2\theta$$
 for $0^0 \le \theta \le 90^0$

Probability = Number of outcomes favorable to E Total Number of Possible Outcomes